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Abstract— Today, the applicability of database systems in cloud 

environments is considerably restricted because of three major 
problems: I) high network latencies for remote/mobile clients, II) 
lack of elastic horizontal scalability mechanisms, and III) missing 
abstraction of storage and data models. In this paper, we propose 
an architecture, a REST/HTTP protocol and a set of algorithms to 
solve these problems through a Database-as-a-Service middleware 
called ORESTES (Objects RESTfully Encapsulated in Standard 
Formats). ORESTES exposes cloud-hosted NoSQL database sys-
tems through a scalable tier of REST servers. These provide data-
base-independent, object-oriented schema design, a client-inde-
pendent REST-API for database operations, globally distributed 
caching, cache consistency mechanisms and optimistic ACID 
transactions. By comparative evaluations we offer empirical evi-
dence that the proposed Database-as-a-Service architecture in-
deed solves common latency, scalability and abstraction problems 
encountered in modern cloud-based applications. 

I. INTRODUCTION 
The emergence of cloud computing, Database-as-a-Service 

(DBaaS) and “NoSQL” databases has demonstrated a clear de-
mand for scalable database systems with cloud-capable, web-
based interfaces [1]. There has been a popular shift in applica-
tion design towards relying on DBaaS systems to manage ap-
plication data. A very recent development is that of “Backend-
as-a-Service” (BaaS), where the cloud database service takes 
the place of a classic application server and allows applications 
(in particular mobile and web applications) to directly connect 
to it. Despite the surge of interest in DBaaS and BaaS, there are 
unsolved problems. The most prominent one is that of high net-
work latencies incurred by database requests from remote cli-
ents. In this paper, we propose a solution to this problem which 
leverages the existing global web caching infrastructure to 
serve database objects with minimal latency.

Different studies have shown the dramatic effect of latency 
on user behavior. For instance, Amazon found that an addi-
tional latency of 100ms resulted in 1% less revenue and Google 
measured that increasing the load time of search results by 
500ms decreased user traffic by 20% [2]. As an average web 
page load performs 90 HTTP requests [2] - many of which fetch 
data from the backend - the DBaaS/BaaS plays an eminent role 
for user-perceived latency. This is particularly true when data 
fetched from the DBaaS/BaaS is used to render the web site or 
web app and thus blocks other operations that incur latency.  

ORESTES (Objects RESTfully Encapsulated in Standard 
Formats) is our proposed BaaS/DBaaS architecture to over-
come these current limitations of the Backend-as-a-Service 
model. ORESTES targets the read-intensive, latency-sensitive 

workloads common for most web applications (e.g. blogs, so-
cial media or e-commerce platforms). A REST interface and 
server-side schema management allow the database to be ac-
cessed by globally distributed users (e.g. mobile devices), sys-
tems (e.g. a PaaS cloud) and applications (e.g. a web app).  

Data is stored in a scalable underlying (NoSQL) database 
system that can be chosen according to functional and non-
functional requirements. For example an application needing 
complex queries, linearizable consistency and scalability would 
employ the ORESTES middleware on top of a database system 
such as MongoDB whereas an application requiring high write-
availability would choose an underlying database system such 
as Riak or Cassandra. ORESTES exposes the same CRUD (cre-
ate, read, update, delete) operations and the same object-ori-
ented schema interface for all systems, while allowing data-
base-specific query languages and extensions. To achieve read 
scalability and solve the latency problem, caching is performed 
by various kinds of web caches at the HTTP level. To make this 
kind of caching feasible, we introduce a cache consistency al-
gorithm based on Bloom filters that prevents stale cache reads 
and ensures consistency. As we found many applications in 
need of transactions for some infrequent operations (e.g. a res-
ervation process), we introduce a generic mechanism for opti-
mistic ACID transaction handling at the middleware level. 

low latency independent 
of geographic location

consumes and saves data directly 
from/to cloud database service

Orestes
REST 

Middleware

global content distribution 
through web caching

Internet

Exposes cloud-hosted NoSQL databases through 
REST/HTTP and adds ACID transactions, 

caching, schema management and autoscaling

Data-Driven
Application

 
Fig. 1 Motivation for ORESTES: low latency Database-as-a-Service. 

The contributions of this paper are threefold: 
1. We introduce a Database-as-a-Service middleware that 

defines a universal REST API (“protocol”) for object-
oriented persistence, queries, schema management and 
ACID transactions.

2. We outline a solution to the latency problem of web and 
mobile applications by adapting the scalability model of 
expiration-based web caching and load balancing for 
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database systems. We introduce an algorithm for cache 
consistency without synchronous invalidation.  

3. In experiments for a cloud computing scenario, we il-
lustrate that the approach does indeed demonstrate the 
desired performance and scalability properties. 

The paper is structured as follows. Section II motivates the 
problem and gives background. Section III and IV describe our 
approach. In Section V an evaluation is given and Section VI 
and VII present related work and conclusions. 

II. BACKGROUND 
Web-based applications have been gaining immense popu-

larity over the last years. They have become the dominating ap-
plication form across many industries and businesses. But with 
increasing complexity of these applications the number of net-
work requests necessary to assemble the user interface (page) 
from HTML, Images, CSS and JavaScript files drastically in-
creases. An average web application performs 90 such requests, 
transferring 1.3 MB of data [2]. However, page load time is 
governed almost solely by network latency rather than band-
width [3]. At a fixed latency page load time saturates at a band-
width of 4-5 Mbps, which is available in most networks. De-
creasing latency at a fixed bandwidth on the other hand leads to 
a strictly proportional decrease in page load time [2]. 

There is an abundance of studies showing the high impact of 
page load time on customer satisfaction, revenue and traffic. 
For this reason, the model of Single Page Applications (SPAs) 
has been proposed to decrease page load time and is gaining 
wide adoption. SPAs are web applications that only reload and 
redraw parts of the page using JavaScript and Ajax. This deliv-
ers a user experience similar to native mobile or desktop appli-
cations. By moving most application logic and working data 
into the client, the application is able to respond much faster by 
avoiding latency-sensitive roundtrips to the server for fetching 
an updated page for each user interaction. Authentication, data 
validation and data persistence is handled by the server side. 
The web application only fetches data that is necessary to up-
date the user interface, for example further results from a prod-
uct catalog. Most native mobile applications (e.g. Android 
apps) behave similarly, as they contain all parts of the user in-
terface and contact a backend for fetching and storing data. 

Even though SPAs reduce the number of requests to the 
backend, performance is still limited by the network latency of 
data requests. We propose ORESTES to solve this problem. 
ORESTES provides a generic framework to the serve the data-
base and backend “as-a-Service”, i.e. handles authentication, 
data validation and data persistence through a REST/HTTP-
API. To achieve low latency for database requests, objects are 
cached through the existing HTTP-based web caching infra-
structure, including client caches (browsers), proxies, web 
caches in carrier networks, CDNs, and server-side caching 
servers. These caches are normally used in caching-aware web 
applications to store immutable content like third-party JavaS-
cript libraries for a fixed timespan. In ORESTES objects are 
stored in these caches by serving them with appropriate caching 
information and handling consistency and versioning in the 
middleware (Figure 2). 

For illustration, please consider the following simplified ex-
ample of an SPA for blogging which requests an article the user 
likes to view. The JavaScript application loads the content of 
the article to update the respective parts of the user interface: 

entityManager.find(articleId) 
The ORESTES client library therefore issues the corresponding 
HTTP call to the ORESTES middleware: 

GET /db/Articles/{articleId} 
If any of the intermediate caches holds a cached representa-

tion of the object, it will be directly served to the client with 
strong latency benefits. The object is returned in the JSON (Ja-
vaScript Object Notation) format and is structured according to 
the corresponding class schema definition for articles. If none 
of the caches holds the object, the ORESTES REST server loads 
it from the database system. This is similar for complex queries, 
updates, schema management and authentication which are al-
ways handled on the server side. Low latency is primarily im-
portant for read requests, as applications often perform writes 
asynchronously and reads synchronously, i.e. with a user wait-
ing for a response. 
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Fig. 2 Different models for dynamic web and mobile applications. 

III. ARCHITECTURE 
We define elastic read scalability as a system’s ability to in-

crease the possible request rate of (key/id-based) reads by using 
server nodes added to the running system. Latency is deter-
mined by two factors: the network round-trip time of a request 
and the processing overhead of the database (disk seeks, quor-
ums, etc.). Read latency is low for any read request that takes 
less time than a full round-trip to the database server.  

To our best knowledge, web caching for database access has 
not yet been researched and hence is a new strategy to make 
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databases benefit from web technologies. The main problem 
which needs to be solved by our approach is the caching model 
of HTTP: the caching lifetimes of objects are predefined and 
ad-hoc invalidations usually impossible [3]. Web caches cannot 
natively provide cache coherence if ad-hoc changes may occur. 
Therefore we propose four consistency strategies: 

1. Read-Any (RA): clients may receive any version; stale-
ness is bounded by a defined cache expiration time.

2. Read-Newest (RN): clients receive the newest version 
using HTTP cache revalidation, i.e. a refresh. 

3. Transactional (TA): the clients’ read sets are validated 
and checked for stale reads at commit time. 

4. Bloom-Filter-Bounded (BFB): by loading a Bloom fil-
ter of recent changes, clients are guaranteed to see only 
object versions that are at least as recent as the database 
state by the time the Bloom filter was generated. 

Read-Any and Read-Newest follow from the HTTP caching 
model. RA has the strongest latency benefits while RN guaran-
tees strong consistency. Transactional offers optimistic ACID 
transactions allowing arbitrary cache reads. Bloom-Filter-
Bounded gives the best tradeoff between consistency and la-
tency and can be combined with RA and TA. TA and BFB are 
explained in a later section. A consistency strategy can be cho-
sen per operation, session, transaction or application and mixed 
according to the application’s needs. 

The proposed architecture is illustrated in Figure 3. The 
ORESTES middleware is comprised of stateless REST servers 
which are realized on top of a scalable database system. Build-
ing on the numerous advancements in the area of distributed 
databases, write scalability and query processing remain the 
duty of the underlying database system. Any database system 

supporting CRUD operations can be plugged into ORESTES. For 
transaction support a compare-and-swap and a consistent read 
operation are also required. The data model (schema), authen-
tication, multi-tenancy, access control, cache consistency and 
object versioning are completely performed in the ORESTES 
middleware. Database-specific capabilities (queries, counters, 
etc.) form additional parts of the REST API. Server-side caches 
and CDN caches are managed by the middleware, i.e. object 
updates are propagated as cache invalidations. If ORESTES is 
deployed in an IaaS Cloud environment, it can leverage elastic 
resource provisioning to start additional caching servers, data-
base nodes and REST servers. 

Clients, which can either be rich clients (SPA, mobile appli-
cations) or classic applications (e.g. application servers) access 
the ORESTES middleware through the caching hierarchy of ex-
isting HTTP Caches. Concrete latency numbers and cache hit 
ratios depend on the workload, geographic position and carrier 
networks but rough estimations are given in the right part of 
Figure 3. Incoming client requests are load-balanced over the 
server-side caches and REST servers, which is enabled by the 
stateless REST API. The properties the proposed architecture 
tries to satisfy are summarized in Table 1. 

TABLE I 
REQUIREMENTS AND THEIR IMPLEMENTATION 

Property Mechanism 

Low latency Existing HTTP caches, e.g. browser caches 
and Content Delivery Networks 

Schema Server-side schema management (schema 
definition, evolution and validation) 

Standard formats HTTP content negotiation, default JSON 
representations 
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Fig. 3 ORESTES Architecture. 

217



Cache consistency Probabilistic algorithm based on a Bloom 
filter of potentially stale database objects

ACID transactions Scalable optimistic concurrency control 
Read scalability 
and elasticity 

Web caching, load balancing, workload-
aware spawning of new web caches  

1. REST/HTTP API 
In the ORESTES REST API abstractions are represented by 

resources identified by URLs, e.g. queries, transactions, ob-
jects, schema, etc. Operations are expressed through the HTTP 
verbs GET, PUT, POST, and DELETE. Resources are inte-
grated through Hypermedia, i.e. mutual referencing, similar to 
web links. For example, a resource for query results has a list 
of references to the objects matching the query predicate (see 
example in Figure 4). This is necessary as the HTTP caching 
model is URL-based and thus only accelerates point lookups by 
object id. Objects can be received (GET), created/replaced 
(PUT), updated (POST) and destroyed (DELETE). 

Database object (JSON)
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/8

changes
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tra
/tr

{
  "_objectInfo": {
    "class": "/db/articles/Post",    
    "oid": "/db/articles/Post/22517998",
    "version": "2"
  },
  "fields": {
    "poster": "/db/users/User/3253453",
    "title": "New article“,
    "comments": [ "Nice“, "Great“ ],   
    "date": Date(...),
    "views": 9250
  }
}

Database Object

changed

matched
query

REST Resources

GET PUT POST DELETE
HypermediaHTTP Interface

references

Schema,
Auth., etc.

 
Fig. 4 Example part of the ORESTES REST interface.  

ORESTES requires objects to carry version numbers (Etags) 
in order to allow optimistic concurrency. The nature of version 
numbers is opaque, so any versioning scheme of the underlying 
database can easily be exposed including version counters, 
timestamps, vector clocks and content hashes. By default, all 
resources in ORESTES are represented as JSON objects. ORES-
TES follows the REST architectural style as described by Field-
ing [4]. Statelessness of communication and thus load balanc-
ing is enabled by not relying on implicit state from request to 
request (e.g. cookies) [5]. Other constraints (caching, client-
server, uniform interface, layered system) are similarly met, 
yielding a property that other protocols like TCP wire proto-
cols, RPC and SOAP services cannot deliver: inherent read 
scalability and low latency provided by the infrastructure [6].  

2. Schema Management 
ORESTES introduces an object-oriented data model based on 

concepts of object databases (e.g. Versant, db4o), object-rela-
tional mapping (e.g. Hibernate) and persistence APIs (e.g. JDO, 
JPA, Entity Framework). For schema-free database systems 
schema management is completely handled in the ORESTES 
middleware. The schema consists of classes which define typed 

fields. Types can be primitives (Integer, String, etc.), typed ref-
erences and collections (Sets, Lists and Hashes). Nesting of 
classes is allowed for denormalization to achieve best perfor-
mance on aggregate-oriented NoSQL databases. Inheritance is 
supported through horizontal partitioning (“table-per-class”), 
i.e. inheritance of class fields. This does not require joins for 
polymorphic reads/queries but can be handled through a union 
operation over the class hierarchy in the middleware. Fields can 
have constraints (e.g. not null, domain checks) which can be 
checked in ORESTES. Consistency Constraints that limit availa-
bility (e.g. uniqueness constraints [7]) are disallowed. 

Access Control Lists may be associated with a schema to 
constrain reads and writes to certain users, groups and roles at 
field or class level. That way a schema for user profiles could 
limit updates to the creator and limit general read access to pub-
lic fields. Objects of classes that constrain read access are not 
cached, so permissions can be checked in ORESTES. 

For schema updates, communication between the REST 
servers is necessary: each server has to know the schema. ORES-
TES supports two kinds of schema updates: 

1. Safe Updates (adding fields, changing field types to a 
parent type): updates are commutative, associative and 
idempotent and can be performed asynchronously 

2. Unsafe Updates (deleting and renaming fields, chang-
ing field types to a non-parent type): updates can lead to 
update anomalies and have to be coordinated 

Schemas are constructed as state-based CRDTs (Commuta-
tive, Convergent, Replicated Data Types) [8] for safe updates. 
Any REST server receiving a safe schema update asynchro-
nously broadcasts the update to all other servers. Every server 
applies a merge function to the current and received schema. 
Due to the properties of this function, schema updates can be 
batched (associativity), concurrently performed (commuta-
tivity) and resent arbitrarily (idempotence). Safe Updates thus 
are non-blocking, efficient and fault-tolerant. Unsafe updates 
on the other hand need coordination to prevent race conditions 
and update anomalies. In ORESTES they are therefore coordi-
nated through a two-phase commit protocol, which blocks the 
database between the prepare and commit phase and is poten-
tially unavailable in case of network partitions. 

IV. SOLVING THE LATENCY PROBLEM 
Recent cloud computing services and NoSQL database in-

terfaces are often exposed as REST/HTTP services [1]. Unlike 
these, ORESTES uses infrastructure-level HTTP caching 
through mechanisms explained in this section. 

1. Leveraging Web Caching 
In ORESTES, all database objects are explicitly marked as 

cacheable for a fixed timespan TTL (e.g. 30 minutes). This de-
creases database utilization and reduces network latency, as 
web caches are optimized for serving many clients concurrently 
and with minimal delay - without contacting the server. We dis-
tinguish between six types of caches that are leveraged in ORES-
TES, based on their network location (see Figure 5) [3], [5]. A 
Client Cache can be directly embedded in the application (1), 
e.g. a browser cache. Server Caches (5), e.g. in-memory data 
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grids and Reverse Proxy Caches (4) as well as CDN caches (6) 
are controlled and invalidated by the REST servers. Forward 
Proxy Caches (2) are shared caches in the client’s network 
while Web Proxy Caches (3) are deployed in carrier networks. 
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Fig. 5 Types of web caches and their behavior in ORESTES.

Web caches are transparent to ORESTES, as all caching is 
strictly performed at HTTP level (Cache-Control, Edge-Con-
trol, Expires header). Autoscaling and invalidation of CDN and 
Reverse Proxy Caches through ORESTES relies on a plug-in 
mechanism for the respective protocols. While scalability of 
CDN caches depends on individual SLAs and contracts, Re-
verse Proxy Caches can be scaled towards higher request rates 
through load balancing and peering (HTCP, ICP, Cache Digests 
[3]) and higher data volumes through partitioning (CARP [3]). 

 Figure 5 illustrates the steps of a web cache for a Read-Any 
object requests in ORESTES: if the object was not previously 
cached, the web cache will forward the request. Otherwise, i.e. 
if a cache-hit occurs, the web cache will determine whether the 
local copy is still fresh by checking the object’s static lifetime. 
If the object is still fresh, it is returned to the client without any 
communication to the database. If the object turns out to be 
stale, the web cache will revalidate the object by asking ORES-
TES to send the latest object should the ETag (version) have 
changed or just to indicate that the current version is still fresh. 

2. Consistent Caching  
The Bloom-Filter-Bounded consistency strategy bounds 

staleness of objects to the age of a Bloom filter that clients fetch 
at connection and transaction begin and update periodically. 
The Bloom filter is a compact, probabilistic set indicating ob-
ject ids changed in a sliding time window of size TTL. The 
ORESTES middleware maintains it as a central, in-memory 
Counting Bloom Filter. It contains the flat Bloom filter that is 
actually transferred but also allows removal of objects. Every 
REST server maintains a priority queue to remove an object it 
has served an update request for and has not been updated for 
TTL minutes, i.e. cannot lead to any stale reads. We skip many 
details for brevity, but the basic read algorithm of a client using 
BFB to load an object o is: 

1. If o.id is not contained in the Bloom filter o can be nor-
mally loaded (from caches) and is guaranteed to be at 
least as recent as the Bloom filter. 

2. If o.id is contained, a HTTP revalidation request is is-
sued, as cached copies are likely stale. The Bloom filter 

has a false positive rate f, which is the small share of all 
revalidations (typically 1%) that are unnecessary. 

Consider the example that during the last  sec-
onds a total of  distinct objects were updated and the 
Bloom filter’s false positive rate is . The Bloom filter 
then has a size of only 12 KB which is similar to a very small 
image. There are only  bits required per 
object. If the number of distinct stale objects increased by 50% 
due to an unexpected surge of updates  would increase from 
1% to only 4.6%. Thus, even large update spikes only have a 
small effect on false positives. The optimal choice of parame-
ters mainly depends on the workload distribution and latency. 
The (Counting) Bloom filter solution is very well-suited for the 
scenario as it combines space-efficiency, salability and very 
high lookup and update performance [9]. 

3. Scalable Caching-aware Optimistic Transactions 
Recent NoSQL databases designed for scalability (like 

BigTable or Dynamo) mainly sacrifice the transaction concept 
[10]. Considerably fewer systems support transactions but con-
strain them to predefined data partitions, stored procedures or 
weaker consistency guarantees (like HAT, Megastore, Elas-
Tras, Calvin or H-Store [11]). As serializable transactions are 
provably irreconcilable with high availability [7] we argue that 
trading availability for full ACID properties is a good solution 
for many applications, in particular if transactions are only per-
formed occasionally. 
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Fig. 6 High-level architecture of our implementation. 

We propose a modification of BOCC+ (Backward Oriented 
Optimistic Concurrency Control) [12] called SCOT (Scalable 
Caching-aware Optimistic Transactions) that allows the occur-
rence of stale cache reads without degrading ACID semantics. 
A SCOT transaction is illustrated in Figure 6: 

1. Upon transaction begin the client receives a Bloom filter 
marking potentially stale objects. 

2. All reads of objects not contained in the Bloom filter can 
be served from caches. Writes always reach the server, 
where they are isolated and invisible to others. 

3. On transaction commit, version numbers of all objects 
that were read (read-set) are transferred to the server.  

4. The REST server handling the commit uses a coordina-
tion service (Zookeeper) to exclude validations of trans-
actions with overlapping read- and write-sets. 

5. If all versions of the read-set are still valid (no conflict-
ing transactions) the private writes are made visible. 
Otherwise the transaction is rolled back. 

We have to omit many details here, but the above procedure 
ensures atomicity and isolation. Durability is a property of the 
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underlying database and consistency is checked for each indi-
vidual write. By the use of a coordinator SCOT transactions 
may suffer unavailability in case of network partitions, but non-
transactional operations are not affected. The major benefit of 
SCOT is its ability to be added to a non-transactional database 
by using the ORESTES middleware and at the same time being 
compatible with caching. Giving a formal correctness proof and 
empirical evaluation of SCOT is a core part of our future work. 

4. Implementation 
The ORESTES implementation consists of several Java pro-

jects which realize the REST server(s), the networking, scaling 
and caching logic, SCOT, schema management, BFB data 
structures and algorithms as well as a generic web dashboard 
for data browsing, administration and development. Currently 
four database implementations (Versant, db4o, Redis, Mon-
goDB) plug into the different ORESTES interfaces which ab-
stract different database concepts (CRUD, data listing, queries, 
versioning, transactions, schema). For Java clients, a low-level 
API and JDO are implemented. For SPAs and other web appli-
cations we designed a JavaScript port of the Java Persistence 
API (JSPA) extended by Backend-as-a-Service functionalities. 

We will publish the complete ORESTES implementation as an 
open-source project, soon. We already contributed our distrib-
uted Bloom filter library (http://divinetraube.github.io/ORESTES-Bloom-
filter), as we found existing implementations to be lacking in 
various aspects. By  goodness of fit tests, we found that the 
trade-off for  and speed was best for the Murmur hash (de-
tailed evaluations and statistics online). 

V. EVALUATION 
This section gives an evaluation of the latency benefits 

ORESTES achieves by leveraging the global caching infrastruc-
ture. A workload is generated through clients using the object-
oriented persistence API JDO. As the underlying database of 
ORESTES we chose the Versant Object Database (VOD), as 
other benchmarks like PolePos [13] indicate that it outperforms 
object-relational mapping and hence gives a significant com-
parison. We compare access through our REST/HTTP middle-
ware to the baseline of the native TCP access protocol of VOD.  

Create  "post" 
objects

Query and change the 
user object

Read  random objects 
of the social network

Delete all created 
objects

Log gathered 
performance data  

Fig. 7 Workload executed by each client. 

The experiments use a complex object model for a social net-
working scenario relying on object-oriented concepts like ag-
gregation, association, generalization, etc. The clients perform 
a navigating access pattern by serially and randomly loading 
objects stored in the database (either drawn from a uniform or 
Zipf distribution) and writing others using transactions, reads, 
queries, updates and deletes. This navigational access is the 
most common pattern in object-oriented persistence [14]. The 
workload generating clients (Figure 7) can be configured by de-
fining their number, the ratio of reads to writes, the amount of 
objects in the database, the probability distribution objects are 
drawn from and the number of consecutive runs. 

The random read operations are central for the experiments. 
We give a simple stochastic model for the expected number of 
cache hits for objects drawn from a uniform distribution over 
several runs by applying a model known for universal hashing 
and the birthday paradox:  buckets represent the objects in 
the cache and loading an object is equivalent to assigning a read 
marker to a bucket with probability . When loading the th 
object, the probability of a cache miss is: 

 

Let the random variable be the indicator variable  which is 
 for a cache miss when loading the th object and  otherwise. 

Summing up the number of cache misses over all  load oper-
ations gives the expected number of cache misses: 

 

 

This follows from the properties of geometrical series and 
linearity of expected values. The expected amount of cache hits 
is . So 300 objects and 500 oper-
ations with a read ratio of 99% gives 252.46 expected cache 
hits for the first, 448.55 for the second and 486.10 for the third 
run. Numbers extracted from the cache logs of an actual execu-
tion confirm this (258, 446, 486). This indicates that for read-
intensive workloads a considerable speedup is possible.  

5. Parallel Cloud-based Scenario 
For the cloud-based scenario, we use Amazon’s Elastic 

Compute Cloud (EC2) as an IaaS platform. The experimental 
setup is depicted in Figure 8. Clients and ORESTES/database are 
distributed with a network latency of . 50 client 
instances (VMs) are triggered simultaneously. VOD uses cli-
ent-embedded caches, while ORESTES uses a shared web cache 
(Squid). Compute capacity is measured in EC2 Compute Units 
(ECUs) which roughly equal the capacity of a 1.0-1.2 GHz 
2007 Xeon. Clients have 1 ECU and 1.7 GB RAM, while the 
cache and VOD have 4 ECUs and 7.5 GB RAM.
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Fig. 8 Cloud computing scenario.  

The average overall execution times are shown in Figure 9. 
We defined a read/write ratio of 90%/10%, considered different 
sizes of the database (300, 3000, 30000 objects) and executed 
the workload in three consecutive runs. The results show how 
our approach outperforms the native VOD protocol and in-
creasingly so as the cache hit ratio rises over the runs (cache 
warming). For higher numbers of total objects, the execution 
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time increases as some purposefully costly operations (like an 
unindexed query) are performed (Figure 10). The execution 
times in the third runs using ORESTES demonstrate that the da-
tabase can perform these operations better, when the effort of 
serving objects is shifted to the cache. Writes are slightly 
slower in ORESTES as they are issued as separate requests 
(“HTTP cache invalidation by side-effect”), while VOD clients 
buffer writes and transfers them in bulk at commit time. 

1. Effects of geographical distribution 
We study the performance of ORESTES for the case of geo-

graphical application/database distribution. Web caching is 
performed in the client’s network, which is located in Hamburg, 
Europe. The database is deployed in the California, USA, cre-
ating the typical Backend-as-a-Service setup. Client and web 
cache are VMs with 2GB of RAM and one core of a 3.4 GHz 
Xeon Sandy Bridge processor. The round-trip time between cli-
ent and database is  over a virtual private net-
work (VPN). We compare different web caches: Squid 2, Squid 
3, Microsoft TMG and a patched version of Squid 3 for which 
we contributed a fix for a mistake in the TCP specification of 
the Nagle algorithm that is out of the scope of this paper.  
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 Fig. 11 Latency of reads, blue box: 25 to 75 percentile, bars: total range. 

The experiments are performed using a working set size of 
300 objects, 3 consecutive runs and different read/write ratios 
(50%/90%/99% reads). Figure 11 shows the latency of fetching 
an object for the different setups comparing ORESTES without 
web caching, ORESTES with different web caches and the native 
VOD protocol.  VOD’s in-memory cache hit latencies are too 
small for the millisecond scale. An average HTTP cache hit has 

a network latency of roughly -  which is faster than a lo-
cal disk access. The figure also shows that Squid 2 and VOD 
need two resp. three TCP round-trips. 

As shown in Figure 12, ORESTES outperforms native VOD 
for all read ratios. As foreshadowed by the stochastic analysis, 
the increasing number of cache hits in the second and third run 
further reduces the overall execution time. Microsoft TMG and 
the patched Squid 3 web caches yield the best performance: the 
performance advantage of ORESTES (web caching) over native 
VOD (client caching) is factor 2.5 in the first, 6.46 in the second 
and 10.87 in the third run. ORESTES profits from read-intensive 
workloads. This becomes obvious when considering the share 
of reads in the total execution times as illustrated in Figure 13 
for a read ratio of 90%. Read operations dominate the execution 
of all configurations, but the impact on VOD is strongest. 

In summary, the experiments show that the proposed ORES-
TES middleware is indeed capable of achieving a massive la-
tency reduction speeding up read-intensive applications while 
still allowing complex queries and transactions. We are cur-
rently working on extending the evaluations to SCOT transac-
tions, different caching topologies and database backends, BFB 
strategies and parameters as well as exactly quantifying hori-
zontal scalability and availability of ORESTES.  

VI. RELATED WORK 
Work on REST interfaces in systems such as CouchDB, 

Riak, Azure Table Storage, PNuts, Neo4J, HBase, SimpleDB, 
database.com, Datomic [15], [16] focuses on interoperability 
and accessibility. ORESTES builds upon this work and extends 
it to actively use infrastructure support (caching and load bal-
ancing) as well as more complex database concepts (schema 
management, transactions). A scalability pattern often found in 
large-scale web applications is that of Memcache or other in-
memory caches serving requests in place of the primary data 
store. ORESTES is similar to this approach but also reduces 
wide-area latency (required for BaaS), automates the process, 
offers BFB consistency and supports transactions. Approaches 
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Fig. 9 Average execution time of 50 concurrent clients. Bars indicate the em-
pirical standard deviation. The y-axis shows stored objects and the run. 

Fig. 10 Average execution time of the cloud computing scenario broken down 
into types of operations for a read ratio of 90% and 30000 database object. 
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based on a caching RBMS like DBProxy and DBCache [17] 
cannot solve the problem of wide-area latency for scattered 
(web/mobile) clients and suffer from scalability limitations. 

The DBaaS model promises to shift the problem of configu-
ration, scaling, provisioning, monitoring, backup, privacy, and 
access control to a service provider [18]. However, low latency 
access, elastic scalability, efficient multitenancy and database 
privacy remain to be solved [18], [19]. In this paper we ad-
dressed the first two: low latency and elastic scalability. Related 
work on scalability often trades transactions for scalability 
(most NoSQL systems) or limits them to partitions (Megastore, 
ElasTras), weaker guarantees (HAT) or stored procedures (H-
Store)  [7], [10], [19]. Google’s F1 [20] uses optimistic trans-
actions similar to ORESTES. It builds on other Google internals 
(Spanner, Colossus File System), special hardware and does not 
support web caching or DBaaS/BaaS access. 

VII. CONCLUSIONS 
The Database- and Backend-as-a-Service model offer many 

opportunities for cloud-based application development. How-
ever, wide-area latency between accessing clients and cloud 
services is a largely unsolved research problem that leads to 
poor performance of web applications. In this paper we de-
scribed ORESTES, a REST middleware for database systems 
that employs the existing web caching infrastructure to solve 
this problem and serve database requests with minimal latency 
- independent of clients’ geographic location. ORESTES uses a 
set of strategies to mitigate inconsistencies caused by stale 
cache reads. The Bloom-Filter-Bounded algorithm produces ef-
ficient staleness bounds, while Scalable Caching-Aware Opti-
mistic Transactions (SCOT) realize ACID transactions that de-
tect and prevent stale reads at commit time. ORESTES allows for 
easy plugging of new database system backends and provides 
the generic schema, caching and networking capabilities for ex-
posing them as a low-latency service. 
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 Fig. 12 Runtimes of the single-client benchmark for different read ratios. The benchmark compares the ORESTES protocol using several web caches to the 
native performance of the Versant Object Database and to ORESTES without any caching at all. Three consecutive runs of the benchmark are performed. 

 
Fig. 13 Share of different operations in the total execution time with a read ratio of 90% on 500 operations and 300 database objects.  
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