
ORESTES: a Scalable Database-as-a-Service
Architecture for Low Latency

Felix Gessert#1, Florian Bücklers#1, Norbert Ritter#1
#Computer Science Department, University of Hamburg

Vogt-Kölln Straße 33, 22527 Hamburg, Germany
{gessert,bueckler,ritter}@informatik.uni-hamburg.de

Abstract— Today, the applicability of database systems in cloud

environments is considerably restricted because of three major
problems: I) high network latencies for remote/mobile clients, II)
lack of elastic horizontal scalability mechanisms, and III) missing
abstraction of storage and data models. In this paper, we propose
an architecture, a REST/HTTP protocol and a set of algorithms to
solve these problems through a Database-as-a-Service middleware
called ORESTES (Objects RESTfully Encapsulated in Standard
Formats). ORESTES exposes cloud-hosted NoSQL database sys-
tems through a scalable tier of REST servers. These provide data-
base-independent, object-oriented schema design, a client-inde-
pendent REST-API for database operations, globally distributed
caching, cache consistency mechanisms and optimistic ACID
transactions. By comparative evaluations we offer empirical evi-
dence that the proposed Database-as-a-Service architecture in-
deed solves common latency, scalability and abstraction problems
encountered in modern cloud-based applications.

I. INTRODUCTION
The emergence of cloud computing, Database-as-a-Service

(DBaaS) and “NoSQL” databases has demonstrated a clear de-
mand for scalable database systems with cloud-capable, web-
based interfaces [1]. There has been a popular shift in applica-
tion design towards relying on DBaaS systems to manage ap-
plication data. A very recent development is that of “Backend-
as-a-Service” (BaaS), where the cloud database service takes
the place of a classic application server and allows applications
(in particular mobile and web applications) to directly connect
to it. Despite the surge of interest in DBaaS and BaaS, there are
unsolved problems. The most prominent one is that of high net-
work latencies incurred by database requests from remote cli-
ents. In this paper, we propose a solution to this problem which
leverages the existing global web caching infrastructure to
serve database objects with minimal latency.

Different studies have shown the dramatic effect of latency
on user behavior. For instance, Amazon found that an addi-
tional latency of 100ms resulted in 1% less revenue and Google
measured that increasing the load time of search results by
500ms decreased user traffic by 20% [2]. As an average web
page load performs 90 HTTP requests [2] - many of which fetch
data from the backend - the DBaaS/BaaS plays an eminent role
for user-perceived latency. This is particularly true when data
fetched from the DBaaS/BaaS is used to render the web site or
web app and thus blocks other operations that incur latency.

ORESTES (Objects RESTfully Encapsulated in Standard
Formats) is our proposed BaaS/DBaaS architecture to over-
come these current limitations of the Backend-as-a-Service
model. ORESTES targets the read-intensive, latency-sensitive

workloads common for most web applications (e.g. blogs, so-
cial media or e-commerce platforms). A REST interface and
server-side schema management allow the database to be ac-
cessed by globally distributed users (e.g. mobile devices), sys-
tems (e.g. a PaaS cloud) and applications (e.g. a web app).

Data is stored in a scalable underlying (NoSQL) database
system that can be chosen according to functional and non-
functional requirements. For example an application needing
complex queries, linearizable consistency and scalability would
employ the ORESTES middleware on top of a database system
such as MongoDB whereas an application requiring high write-
availability would choose an underlying database system such
as Riak or Cassandra. ORESTES exposes the same CRUD (cre-
ate, read, update, delete) operations and the same object-ori-
ented schema interface for all systems, while allowing data-
base-specific query languages and extensions. To achieve read
scalability and solve the latency problem, caching is performed
by various kinds of web caches at the HTTP level. To make this
kind of caching feasible, we introduce a cache consistency al-
gorithm based on Bloom filters that prevents stale cache reads
and ensures consistency. As we found many applications in
need of transactions for some infrequent operations (e.g. a res-
ervation process), we introduce a generic mechanism for opti-
mistic ACID transaction handling at the middleware level.

low latency independent
of geographic location

consumes and saves data directly
from/to cloud database service

Orestes
REST

Middleware

global content distribution
through web caching

Internet

Exposes cloud-hosted NoSQL databases through
REST/HTTP and adds ACID transactions,

caching, schema management and autoscaling

Data-Driven
Application

Fig. 1 Motivation for ORESTES: low latency Database-as-a-Service.

The contributions of this paper are threefold:
1. We introduce a Database-as-a-Service middleware that

defines a universal REST API (“protocol”) for object-
oriented persistence, queries, schema management and
ACID transactions.

2. We outline a solution to the latency problem of web and
mobile applications by adapting the scalability model of
expiration-based web caching and load balancing for

978-1-4799-3481-2/14/$31.00 © 2014 IEEE ICDE Workshops 2014215

database systems. We introduce an algorithm for cache
consistency without synchronous invalidation.

3. In experiments for a cloud computing scenario, we il-
lustrate that the approach does indeed demonstrate the
desired performance and scalability properties.

The paper is structured as follows. Section II motivates the
problem and gives background. Section III and IV describe our
approach. In Section V an evaluation is given and Section VI
and VII present related work and conclusions.

II. BACKGROUND
Web-based applications have been gaining immense popu-

larity over the last years. They have become the dominating ap-
plication form across many industries and businesses. But with
increasing complexity of these applications the number of net-
work requests necessary to assemble the user interface (page)
from HTML, Images, CSS and JavaScript files drastically in-
creases. An average web application performs 90 such requests,
transferring 1.3 MB of data [2]. However, page load time is
governed almost solely by network latency rather than band-
width [3]. At a fixed latency page load time saturates at a band-
width of 4-5 Mbps, which is available in most networks. De-
creasing latency at a fixed bandwidth on the other hand leads to
a strictly proportional decrease in page load time [2].

There is an abundance of studies showing the high impact of
page load time on customer satisfaction, revenue and traffic.
For this reason, the model of Single Page Applications (SPAs)
has been proposed to decrease page load time and is gaining
wide adoption. SPAs are web applications that only reload and
redraw parts of the page using JavaScript and Ajax. This deliv-
ers a user experience similar to native mobile or desktop appli-
cations. By moving most application logic and working data
into the client, the application is able to respond much faster by
avoiding latency-sensitive roundtrips to the server for fetching
an updated page for each user interaction. Authentication, data
validation and data persistence is handled by the server side.
The web application only fetches data that is necessary to up-
date the user interface, for example further results from a prod-
uct catalog. Most native mobile applications (e.g. Android
apps) behave similarly, as they contain all parts of the user in-
terface and contact a backend for fetching and storing data.

Even though SPAs reduce the number of requests to the
backend, performance is still limited by the network latency of
data requests. We propose ORESTES to solve this problem.
ORESTES provides a generic framework to the serve the data-
base and backend “as-a-Service”, i.e. handles authentication,
data validation and data persistence through a REST/HTTP-
API. To achieve low latency for database requests, objects are
cached through the existing HTTP-based web caching infra-
structure, including client caches (browsers), proxies, web
caches in carrier networks, CDNs, and server-side caching
servers. These caches are normally used in caching-aware web
applications to store immutable content like third-party JavaS-
cript libraries for a fixed timespan. In ORESTES objects are
stored in these caches by serving them with appropriate caching
information and handling consistency and versioning in the
middleware (Figure 2).

For illustration, please consider the following simplified ex-
ample of an SPA for blogging which requests an article the user
likes to view. The JavaScript application loads the content of
the article to update the respective parts of the user interface:

entityManager.find(articleId)
The ORESTES client library therefore issues the corresponding
HTTP call to the ORESTES middleware:

GET /db/Articles/{articleId}
If any of the intermediate caches holds a cached representa-

tion of the object, it will be directly served to the client with
strong latency benefits. The object is returned in the JSON (Ja-
vaScript Object Notation) format and is structured according to
the corresponding class schema definition for articles. If none
of the caches holds the object, the ORESTES REST server loads
it from the database system. This is similar for complex queries,
updates, schema management and authentication which are al-
ways handled on the server side. Low latency is primarily im-
portant for read requests, as applications often perform writes
asynchronously and reads synchronously, i.e. with a user wait-
ing for a response.

SPA /
mobile AppDatabase

Web
Server

Web
Server

Internet

Data (e.g. JSON)

SPA /
mobile AppDatabase

ORESTES
Middleware

REST
Server

Low Latency

Web Caches

Internet

Web
FrontendDatabase Application

Web
Server

Web
Server

High Latency

HTML, Images,
CSS, ...

~90~9

Internet

Cacheable
DB objects

REST
Server

Custom
Backend

Application Logic

Application Logic

Application Logic

Authentication,
Data Validation,
Data Persistence

Authentication,
Data Validation,
Data Persistence

Fig. 2 Different models for dynamic web and mobile applications.

III. ARCHITECTURE
We define elastic read scalability as a system’s ability to in-

crease the possible request rate of (key/id-based) reads by using
server nodes added to the running system. Latency is deter-
mined by two factors: the network round-trip time of a request
and the processing overhead of the database (disk seeks, quor-
ums, etc.). Read latency is low for any read request that takes
less time than a full round-trip to the database server.

To our best knowledge, web caching for database access has
not yet been researched and hence is a new strategy to make

216

databases benefit from web technologies. The main problem
which needs to be solved by our approach is the caching model
of HTTP: the caching lifetimes of objects are predefined and
ad-hoc invalidations usually impossible [3]. Web caches cannot
natively provide cache coherence if ad-hoc changes may occur.
Therefore we propose four consistency strategies:

1. Read-Any (RA): clients may receive any version; stale-
ness is bounded by a defined cache expiration time.

2. Read-Newest (RN): clients receive the newest version
using HTTP cache revalidation, i.e. a refresh.

3. Transactional (TA): the clients’ read sets are validated
and checked for stale reads at commit time.

4. Bloom-Filter-Bounded (BFB): by loading a Bloom fil-
ter of recent changes, clients are guaranteed to see only
object versions that are at least as recent as the database
state by the time the Bloom filter was generated.

Read-Any and Read-Newest follow from the HTTP caching
model. RA has the strongest latency benefits while RN guaran-
tees strong consistency. Transactional offers optimistic ACID
transactions allowing arbitrary cache reads. Bloom-Filter-
Bounded gives the best tradeoff between consistency and la-
tency and can be combined with RA and TA. TA and BFB are
explained in a later section. A consistency strategy can be cho-
sen per operation, session, transaction or application and mixed
according to the application’s needs.

The proposed architecture is illustrated in Figure 3. The
ORESTES middleware is comprised of stateless REST servers
which are realized on top of a scalable database system. Build-
ing on the numerous advancements in the area of distributed
databases, write scalability and query processing remain the
duty of the underlying database system. Any database system

supporting CRUD operations can be plugged into ORESTES. For
transaction support a compare-and-swap and a consistent read
operation are also required. The data model (schema), authen-
tication, multi-tenancy, access control, cache consistency and
object versioning are completely performed in the ORESTES
middleware. Database-specific capabilities (queries, counters,
etc.) form additional parts of the REST API. Server-side caches
and CDN caches are managed by the middleware, i.e. object
updates are propagated as cache invalidations. If ORESTES is
deployed in an IaaS Cloud environment, it can leverage elastic
resource provisioning to start additional caching servers, data-
base nodes and REST servers.

Clients, which can either be rich clients (SPA, mobile appli-
cations) or classic applications (e.g. application servers) access
the ORESTES middleware through the caching hierarchy of ex-
isting HTTP Caches. Concrete latency numbers and cache hit
ratios depend on the workload, geographic position and carrier
networks but rough estimations are given in the right part of
Figure 3. Incoming client requests are load-balanced over the
server-side caches and REST servers, which is enabled by the
stateless REST API. The properties the proposed architecture
tries to satisfy are summarized in Table 1.

TABLE I
REQUIREMENTS AND THEIR IMPLEMENTATION

Property Mechanism

Low latency Existing HTTP caches, e.g. browser caches
and Content Delivery Networks

Schema Server-side schema management (schema
definition, evolution and validation)

Standard formats HTTP content negotiation, default JSON
representations

Infrastructure-as-
a-Service Cloud

Load Balancer

REST-Server

Cache

Scalable Database System

HTTP
REST-API Transactions

Schema Management

Cache Consistency

Auto-Scaling Multi-Tenancy

Security and Access Control

Edge Cache
Network

Proxy Caches
Mobile
Client

Application
(Server)

Paas Cloud or
Corporate DC

Global Content
Delivery Network

Cachescale,
invalidate

scale

REST-Server

100%50%0%

P(Cache Hit)

~0 ms Client-
(Browser)-
Caches

ISP Caches

CDN
Caches

Reverse-
Proxy
Caches

Proxy
Caches

~1 ms

~10 ms

~15 ms

~40-500 ms

Cache Hit Probability

Latency benefit

Browser
Client

Mobile
Client

Browser
Client

r

ISP Caches

API (REST):
Read, Query, Create, Update, Delete,
Begin Transaction, Commit, ...

Application

REST-Server

 database protocols

Fig. 3 ORESTES Architecture.

217

Cache consistency Probabilistic algorithm based on a Bloom
filter of potentially stale database objects

ACID transactions Scalable optimistic concurrency control
Read scalability
and elasticity

Web caching, load balancing, workload-
aware spawning of new web caches

1. REST/HTTP API
In the ORESTES REST API abstractions are represented by

resources identified by URLs, e.g. queries, transactions, ob-
jects, schema, etc. Operations are expressed through the HTTP
verbs GET, PUT, POST, and DELETE. Resources are inte-
grated through Hypermedia, i.e. mutual referencing, similar to
web links. For example, a resource for query results has a list
of references to the objects matching the query predicate (see
example in Figure 4). This is necessary as the HTTP caching
model is URL-based and thus only accelerates point lookups by
object id. Objects can be received (GET), created/replaced
(PUT), updated (POST) and destroyed (DELETE).

Database object (JSON)

transactions
/transaction

data
/db

namespace
/articles

class
/Post

TID
/8

changes
/changeset

tra
/tr

{
 "_objectInfo": {
 "class": "/db/articles/Post",
 "oid": "/db/articles/Post/22517998",
 "version": "2"
 },
 "fields": {
 "poster": "/db/users/User/3253453",
 "title": "New article“,
 "comments": ["Nice“, "Great“],
 "date": Date(...),
 "views": 9250
 }
}

Database Object

changed

matched
query

REST Resources

GET PUT POST DELETE
HypermediaHTTP Interface

references

Schema,
Auth., etc.

Fig. 4 Example part of the ORESTES REST interface.

ORESTES requires objects to carry version numbers (Etags)
in order to allow optimistic concurrency. The nature of version
numbers is opaque, so any versioning scheme of the underlying
database can easily be exposed including version counters,
timestamps, vector clocks and content hashes. By default, all
resources in ORESTES are represented as JSON objects. ORES-
TES follows the REST architectural style as described by Field-
ing [4]. Statelessness of communication and thus load balanc-
ing is enabled by not relying on implicit state from request to
request (e.g. cookies) [5]. Other constraints (caching, client-
server, uniform interface, layered system) are similarly met,
yielding a property that other protocols like TCP wire proto-
cols, RPC and SOAP services cannot deliver: inherent read
scalability and low latency provided by the infrastructure [6].

2. Schema Management
ORESTES introduces an object-oriented data model based on

concepts of object databases (e.g. Versant, db4o), object-rela-
tional mapping (e.g. Hibernate) and persistence APIs (e.g. JDO,
JPA, Entity Framework). For schema-free database systems
schema management is completely handled in the ORESTES
middleware. The schema consists of classes which define typed

fields. Types can be primitives (Integer, String, etc.), typed ref-
erences and collections (Sets, Lists and Hashes). Nesting of
classes is allowed for denormalization to achieve best perfor-
mance on aggregate-oriented NoSQL databases. Inheritance is
supported through horizontal partitioning (“table-per-class”),
i.e. inheritance of class fields. This does not require joins for
polymorphic reads/queries but can be handled through a union
operation over the class hierarchy in the middleware. Fields can
have constraints (e.g. not null, domain checks) which can be
checked in ORESTES. Consistency Constraints that limit availa-
bility (e.g. uniqueness constraints [7]) are disallowed.

Access Control Lists may be associated with a schema to
constrain reads and writes to certain users, groups and roles at
field or class level. That way a schema for user profiles could
limit updates to the creator and limit general read access to pub-
lic fields. Objects of classes that constrain read access are not
cached, so permissions can be checked in ORESTES.

For schema updates, communication between the REST
servers is necessary: each server has to know the schema. ORES-
TES supports two kinds of schema updates:

1. Safe Updates (adding fields, changing field types to a
parent type): updates are commutative, associative and
idempotent and can be performed asynchronously

2. Unsafe Updates (deleting and renaming fields, chang-
ing field types to a non-parent type): updates can lead to
update anomalies and have to be coordinated

Schemas are constructed as state-based CRDTs (Commuta-
tive, Convergent, Replicated Data Types) [8] for safe updates.
Any REST server receiving a safe schema update asynchro-
nously broadcasts the update to all other servers. Every server
applies a merge function to the current and received schema.
Due to the properties of this function, schema updates can be
batched (associativity), concurrently performed (commuta-
tivity) and resent arbitrarily (idempotence). Safe Updates thus
are non-blocking, efficient and fault-tolerant. Unsafe updates
on the other hand need coordination to prevent race conditions
and update anomalies. In ORESTES they are therefore coordi-
nated through a two-phase commit protocol, which blocks the
database between the prepare and commit phase and is poten-
tially unavailable in case of network partitions.

IV. SOLVING THE LATENCY PROBLEM
Recent cloud computing services and NoSQL database in-

terfaces are often exposed as REST/HTTP services [1]. Unlike
these, ORESTES uses infrastructure-level HTTP caching
through mechanisms explained in this section.

1. Leveraging Web Caching
In ORESTES, all database objects are explicitly marked as

cacheable for a fixed timespan TTL (e.g. 30 minutes). This de-
creases database utilization and reduces network latency, as
web caches are optimized for serving many clients concurrently
and with minimal delay - without contacting the server. We dis-
tinguish between six types of caches that are leveraged in ORES-
TES, based on their network location (see Figure 5) [3], [5]. A
Client Cache can be directly embedded in the application (1),
e.g. a browser cache. Server Caches (5), e.g. in-memory data

218

grids and Reverse Proxy Caches (4) as well as CDN caches (6)
are controlled and invalidated by the REST servers. Forward
Proxy Caches (2) are shared caches in the client’s network
while Web Proxy Caches (3) are deployed in carrier networks.

Forward Proxy
Cache

Client Cache
(e.g. Browser)

Reverse Proxy
Cache

Server Cache1 6

42

Peering

Web Proxy Cache

ISP ISP

3

g

CDN caches 5

Loading a
database object

GET /db/ns/42 Cache
Hit?

Application Web Caches of type 1-5

yesObject, TTL=x

Object
fresh?

yes
no

revalidate
no

GET /db/ns/42

Database

Confirms freshness or
returns object

RE
ST

 C
lie

nt

RE
ST

 S
er

ve
r

Fig. 5 Types of web caches and their behavior in ORESTES.

Web caches are transparent to ORESTES, as all caching is
strictly performed at HTTP level (Cache-Control, Edge-Con-
trol, Expires header). Autoscaling and invalidation of CDN and
Reverse Proxy Caches through ORESTES relies on a plug-in
mechanism for the respective protocols. While scalability of
CDN caches depends on individual SLAs and contracts, Re-
verse Proxy Caches can be scaled towards higher request rates
through load balancing and peering (HTCP, ICP, Cache Digests
[3]) and higher data volumes through partitioning (CARP [3]).

 Figure 5 illustrates the steps of a web cache for a Read-Any
object requests in ORESTES: if the object was not previously
cached, the web cache will forward the request. Otherwise, i.e.
if a cache-hit occurs, the web cache will determine whether the
local copy is still fresh by checking the object’s static lifetime.
If the object is still fresh, it is returned to the client without any
communication to the database. If the object turns out to be
stale, the web cache will revalidate the object by asking ORES-
TES to send the latest object should the ETag (version) have
changed or just to indicate that the current version is still fresh.

2. Consistent Caching
The Bloom-Filter-Bounded consistency strategy bounds

staleness of objects to the age of a Bloom filter that clients fetch
at connection and transaction begin and update periodically.
The Bloom filter is a compact, probabilistic set indicating ob-
ject ids changed in a sliding time window of size TTL. The
ORESTES middleware maintains it as a central, in-memory
Counting Bloom Filter. It contains the flat Bloom filter that is
actually transferred but also allows removal of objects. Every
REST server maintains a priority queue to remove an object it
has served an update request for and has not been updated for
TTL minutes, i.e. cannot lead to any stale reads. We skip many
details for brevity, but the basic read algorithm of a client using
BFB to load an object o is:

1. If o.id is not contained in the Bloom filter o can be nor-
mally loaded (from caches) and is guaranteed to be at
least as recent as the Bloom filter.

2. If o.id is contained, a HTTP revalidation request is is-
sued, as cached copies are likely stale. The Bloom filter

has a false positive rate f, which is the small share of all
revalidations (typically 1%) that are unnecessary.

Consider the example that during the last sec-
onds a total of distinct objects were updated and the
Bloom filter’s false positive rate is . The Bloom filter
then has a size of only 12 KB which is similar to a very small
image. There are only bits required per
object. If the number of distinct stale objects increased by 50%
due to an unexpected surge of updates would increase from
1% to only 4.6%. Thus, even large update spikes only have a
small effect on false positives. The optimal choice of parame-
ters mainly depends on the workload distribution and latency.
The (Counting) Bloom filter solution is very well-suited for the
scenario as it combines space-efficiency, salability and very
high lookup and update performance [9].

3. Scalable Caching-aware Optimistic Transactions
Recent NoSQL databases designed for scalability (like

BigTable or Dynamo) mainly sacrifice the transaction concept
[10]. Considerably fewer systems support transactions but con-
strain them to predefined data partitions, stored procedures or
weaker consistency guarantees (like HAT, Megastore, Elas-
Tras, Calvin or H-Store [11]). As serializable transactions are
provably irreconcilable with high availability [7] we argue that
trading availability for full ACID properties is a good solution
for many applications, in particular if transactions are only per-
formed occasionally.

Cache

Cache

Cache
REST-Server

REST-Server

REST-Server

DB

Coordinator

validation

Begin Transaction
Bloom Filter

Reads
Writes

Commit: read- & write-set versions
Committed OR aborted + stale objects

1

2

cttssssssssss
3

onnnnnnnnnnnnnnnn 4
5

Writes
(Hidden)

Writes (Public)

BBB
B

RR
WWW

CCCCC
CCCCCCC

Client

prevent conflicting
validations

Read all

scale to high commit throughputs
and ensure availability

Fig. 6 High-level architecture of our implementation.

We propose a modification of BOCC+ (Backward Oriented
Optimistic Concurrency Control) [12] called SCOT (Scalable
Caching-aware Optimistic Transactions) that allows the occur-
rence of stale cache reads without degrading ACID semantics.
A SCOT transaction is illustrated in Figure 6:

1. Upon transaction begin the client receives a Bloom filter
marking potentially stale objects.

2. All reads of objects not contained in the Bloom filter can
be served from caches. Writes always reach the server,
where they are isolated and invisible to others.

3. On transaction commit, version numbers of all objects
that were read (read-set) are transferred to the server.

4. The REST server handling the commit uses a coordina-
tion service (Zookeeper) to exclude validations of trans-
actions with overlapping read- and write-sets.

5. If all versions of the read-set are still valid (no conflict-
ing transactions) the private writes are made visible.
Otherwise the transaction is rolled back.

We have to omit many details here, but the above procedure
ensures atomicity and isolation. Durability is a property of the

219

underlying database and consistency is checked for each indi-
vidual write. By the use of a coordinator SCOT transactions
may suffer unavailability in case of network partitions, but non-
transactional operations are not affected. The major benefit of
SCOT is its ability to be added to a non-transactional database
by using the ORESTES middleware and at the same time being
compatible with caching. Giving a formal correctness proof and
empirical evaluation of SCOT is a core part of our future work.

4. Implementation
The ORESTES implementation consists of several Java pro-

jects which realize the REST server(s), the networking, scaling
and caching logic, SCOT, schema management, BFB data
structures and algorithms as well as a generic web dashboard
for data browsing, administration and development. Currently
four database implementations (Versant, db4o, Redis, Mon-
goDB) plug into the different ORESTES interfaces which ab-
stract different database concepts (CRUD, data listing, queries,
versioning, transactions, schema). For Java clients, a low-level
API and JDO are implemented. For SPAs and other web appli-
cations we designed a JavaScript port of the Java Persistence
API (JSPA) extended by Backend-as-a-Service functionalities.

We will publish the complete ORESTES implementation as an
open-source project, soon. We already contributed our distrib-
uted Bloom filter library (http://divinetraube.github.io/ORESTES-Bloom-
filter), as we found existing implementations to be lacking in
various aspects. By goodness of fit tests, we found that the
trade-off for and speed was best for the Murmur hash (de-
tailed evaluations and statistics online).

V. EVALUATION
This section gives an evaluation of the latency benefits

ORESTES achieves by leveraging the global caching infrastruc-
ture. A workload is generated through clients using the object-
oriented persistence API JDO. As the underlying database of
ORESTES we chose the Versant Object Database (VOD), as
other benchmarks like PolePos [13] indicate that it outperforms
object-relational mapping and hence gives a significant com-
parison. We compare access through our REST/HTTP middle-
ware to the baseline of the native TCP access protocol of VOD.

Create "post"
objects

Query and change the
user object

Read random objects
of the social network

Delete all created
objects

Log gathered
performance data

Fig. 7 Workload executed by each client.

The experiments use a complex object model for a social net-
working scenario relying on object-oriented concepts like ag-
gregation, association, generalization, etc. The clients perform
a navigating access pattern by serially and randomly loading
objects stored in the database (either drawn from a uniform or
Zipf distribution) and writing others using transactions, reads,
queries, updates and deletes. This navigational access is the
most common pattern in object-oriented persistence [14]. The
workload generating clients (Figure 7) can be configured by de-
fining their number, the ratio of reads to writes, the amount of
objects in the database, the probability distribution objects are
drawn from and the number of consecutive runs.

The random read operations are central for the experiments.
We give a simple stochastic model for the expected number of
cache hits for objects drawn from a uniform distribution over
several runs by applying a model known for universal hashing
and the birthday paradox: buckets represent the objects in
the cache and loading an object is equivalent to assigning a read
marker to a bucket with probability . When loading the th
object, the probability of a cache miss is:

Let the random variable be the indicator variable which is
 for a cache miss when loading the th object and otherwise.

Summing up the number of cache misses over all load oper-
ations gives the expected number of cache misses:

This follows from the properties of geometrical series and
linearity of expected values. The expected amount of cache hits
is . So 300 objects and 500 oper-
ations with a read ratio of 99% gives 252.46 expected cache
hits for the first, 448.55 for the second and 486.10 for the third
run. Numbers extracted from the cache logs of an actual execu-
tion confirm this (258, 446, 486). This indicates that for read-
intensive workloads a considerable speedup is possible.

5. Parallel Cloud-based Scenario
For the cloud-based scenario, we use Amazon’s Elastic

Compute Cloud (EC2) as an IaaS platform. The experimental
setup is depicted in Figure 8. Clients and ORESTES/database are
distributed with a network latency of . 50 client
instances (VMs) are triggered simultaneously. VOD uses cli-
ent-embedded caches, while ORESTES uses a shared web cache
(Squid). Compute capacity is measured in EC2 Compute Units
(ECUs) which roughly equal the capacity of a 1.0-1.2 GHz
2007 Xeon. Clients have 1 ECU and 1.7 GB RAM, while the
cache and VOD have 4 ECUs and 7.5 GB RAM.

Amazon EC2
Ireland

Client
InstanceTrigger

Client
InstanceTrigger

...

Client
InstanceTrigger

Internet
Versant
Object

DatabaseLa
un

ch
er

165ms

Amazon EC2
California

Launched
simultaneously

OS: Linux
Size: 2 cores, 7.5 GB RAM

OS: Windows Server
Size: 2 cores, 7.5 GB RAM

OS: Windows Server
Size: 1 core, 1 GB RAM

Squid
Web

Cache O
re

st
es

Ir 1

Ir 2

Ir 50

Fig. 8 Cloud computing scenario.

The average overall execution times are shown in Figure 9.
We defined a read/write ratio of 90%/10%, considered different
sizes of the database (300, 3000, 30000 objects) and executed
the workload in three consecutive runs. The results show how
our approach outperforms the native VOD protocol and in-
creasingly so as the cache hit ratio rises over the runs (cache
warming). For higher numbers of total objects, the execution

220

time increases as some purposefully costly operations (like an
unindexed query) are performed (Figure 10). The execution
times in the third runs using ORESTES demonstrate that the da-
tabase can perform these operations better, when the effort of
serving objects is shifted to the cache. Writes are slightly
slower in ORESTES as they are issued as separate requests
(“HTTP cache invalidation by side-effect”), while VOD clients
buffer writes and transfers them in bulk at commit time.

1. Effects of geographical distribution
We study the performance of ORESTES for the case of geo-

graphical application/database distribution. Web caching is
performed in the client’s network, which is located in Hamburg,
Europe. The database is deployed in the California, USA, cre-
ating the typical Backend-as-a-Service setup. Client and web
cache are VMs with 2GB of RAM and one core of a 3.4 GHz
Xeon Sandy Bridge processor. The round-trip time between cli-
ent and database is over a virtual private net-
work (VPN). We compare different web caches: Squid 2, Squid
3, Microsoft TMG and a patched version of Squid 3 for which
we contributed a fix for a mistake in the TCP specification of
the Nagle algorithm that is out of the scope of this paper.

0 100 200 300 400 500 600

Squid 2
Squid 3 patched

Microsoft TMG
No cache

VOD (client cache)

Cache Hits Cache Misses

Latency [ms]

Se
tu

p

 Fig. 11 Latency of reads, blue box: 25 to 75 percentile, bars: total range.

The experiments are performed using a working set size of
300 objects, 3 consecutive runs and different read/write ratios
(50%/90%/99% reads). Figure 11 shows the latency of fetching
an object for the different setups comparing ORESTES without
web caching, ORESTES with different web caches and the native
VOD protocol. VOD’s in-memory cache hit latencies are too
small for the millisecond scale. An average HTTP cache hit has

a network latency of roughly - which is faster than a lo-
cal disk access. The figure also shows that Squid 2 and VOD
need two resp. three TCP round-trips.

As shown in Figure 12, ORESTES outperforms native VOD
for all read ratios. As foreshadowed by the stochastic analysis,
the increasing number of cache hits in the second and third run
further reduces the overall execution time. Microsoft TMG and
the patched Squid 3 web caches yield the best performance: the
performance advantage of ORESTES (web caching) over native
VOD (client caching) is factor 2.5 in the first, 6.46 in the second
and 10.87 in the third run. ORESTES profits from read-intensive
workloads. This becomes obvious when considering the share
of reads in the total execution times as illustrated in Figure 13
for a read ratio of 90%. Read operations dominate the execution
of all configurations, but the impact on VOD is strongest.

In summary, the experiments show that the proposed ORES-
TES middleware is indeed capable of achieving a massive la-
tency reduction speeding up read-intensive applications while
still allowing complex queries and transactions. We are cur-
rently working on extending the evaluations to SCOT transac-
tions, different caching topologies and database backends, BFB
strategies and parameters as well as exactly quantifying hori-
zontal scalability and availability of ORESTES.

VI. RELATED WORK
Work on REST interfaces in systems such as CouchDB,

Riak, Azure Table Storage, PNuts, Neo4J, HBase, SimpleDB,
database.com, Datomic [15], [16] focuses on interoperability
and accessibility. ORESTES builds upon this work and extends
it to actively use infrastructure support (caching and load bal-
ancing) as well as more complex database concepts (schema
management, transactions). A scalability pattern often found in
large-scale web applications is that of Memcache or other in-
memory caches serving requests in place of the primary data
store. ORESTES is similar to this approach but also reduces
wide-area latency (required for BaaS), automates the process,
offers BFB consistency and supports transactions. Approaches

50 100 150 200 250

300 / 1

300 / 2

300 / 3

3000 / 1

3000 / 2

3000 / 3

30000 / 1

30000 / 2

30000 / 3

Time [s]

Se
tu

p
[#

ob
je

ct
s/

ru
n]

VOD (client cache)

Orestes (Squid 3 patched)

0 50 100 150 200 250

1

2

3

Time [s]

Ru
n

VOD (client cache)

0 50 100 150 200 250

1

2

3

Time [s]

Ru
n

Orestes (Squid 3 patched)
reads
writes
querys
other (e.g. transactions)

Fig. 9 Average execution time of 50 concurrent clients. Bars indicate the em-
pirical standard deviation. The y-axis shows stored objects and the run.

Fig. 10 Average execution time of the cloud computing scenario broken down
into types of operations for a read ratio of 90% and 30000 database object.

221

based on a caching RBMS like DBProxy and DBCache [17]
cannot solve the problem of wide-area latency for scattered
(web/mobile) clients and suffer from scalability limitations.

The DBaaS model promises to shift the problem of configu-
ration, scaling, provisioning, monitoring, backup, privacy, and
access control to a service provider [18]. However, low latency
access, elastic scalability, efficient multitenancy and database
privacy remain to be solved [18], [19]. In this paper we ad-
dressed the first two: low latency and elastic scalability. Related
work on scalability often trades transactions for scalability
(most NoSQL systems) or limits them to partitions (Megastore,
ElasTras), weaker guarantees (HAT) or stored procedures (H-
Store) [7], [10], [19]. Google’s F1 [20] uses optimistic trans-
actions similar to ORESTES. It builds on other Google internals
(Spanner, Colossus File System), special hardware and does not
support web caching or DBaaS/BaaS access.

VII. CONCLUSIONS
The Database- and Backend-as-a-Service model offer many

opportunities for cloud-based application development. How-
ever, wide-area latency between accessing clients and cloud
services is a largely unsolved research problem that leads to
poor performance of web applications. In this paper we de-
scribed ORESTES, a REST middleware for database systems
that employs the existing web caching infrastructure to solve
this problem and serve database requests with minimal latency
- independent of clients’ geographic location. ORESTES uses a
set of strategies to mitigate inconsistencies caused by stale
cache reads. The Bloom-Filter-Bounded algorithm produces ef-
ficient staleness bounds, while Scalable Caching-Aware Opti-
mistic Transactions (SCOT) realize ACID transactions that de-
tect and prevent stale reads at commit time. ORESTES allows for
easy plugging of new database system backends and provides
the generic schema, caching and networking capabilities for ex-
posing them as a low-latency service.

REFERENCES
[1] R. Cattell, “Scalable sql and nosql data stores,” ACM SIGMOD Record,

vol. 39, no. 4, pp. 12–27, 2011.
[2] I. Grigorik, High performance browser networking. [S.l.]: O’Reilly

Media, 2013.
[3] M. Rabinovich and O. Spatscheck, “Web caching and replication,”

SIGMOD Record, vol. 32, no. 4, p. 107, 2003.
[4] R. T. Fielding, “Architectural styles and the design of network-based

software architectures,” University of California, 2000.
[5] R. Fielding et al., “RFC 2616: Hypertext Transfer Protocol–HTTP/1.1,

1999,” URL http://www. rfc. net/rfc2616. html, 2009.
[6] L. Richardson and S. Ruby, RESTful web services. O’Reilly Media,

2007.
[7] P. Bailis et al., “Highly Available Transactions: Virtues and Limita-

tions,” Proceedings of the VLDB Endowment, vol. 7, no. 3, 2013.
[8] M. Shapiro et al., “A comprehensive study of convergent and commu-

tative replicated data types,” 2011.
[9] A. Broder and M. Mitzenmacher, “Network applications of bloom fil-

ters: A survey,” Internet Math., vol. 1, no. 4, pp. 485–509, 2004.
[10] G. DeCandia et al., “Dynamo: amazon’s highly available key-value

store,” in ACM SOSP, 2007, vol. 14, pp. 205–220.
[11] J. Baker et al., “Megastore: Providing scalable, highly available storage

for interactive services,” in Proc. of CIDR, 2011, pp. 223–234.
[12] G. Weikum and G. Vossen, Transactional information systems. Mor-

gan Kaufmann Pub, 2002.
[13] “PolePos Benchmark.” [Online]. Available: http://polepos.org/. [Ac-

cessed: 28-Feb-2013].
[14] M. Grossniklaus, “The case for object databases in cloud data manage-

ment,” Objects and Databases, pp. 25–39, 2010.
[15] S. Sakr et al., “A survey of large scale data management approaches in

cloud environments,” Communications Surveys & Tutorials, IEEE, vol.
13, no. 3, pp. 311–336, 2011.

[16] D. Sitaram and G. Manjunath, Moving To The Cloud: Developing Apps
in the New World of Cloud Computing. Syngress, 2011.

[17] C. Bornhövd et al., “Adaptive database caching with DBCache,” Data
Engineering, vol. 27, no. 2, pp. 11–18, 2004.

[18] C. A. Curino et al., “Relational cloud: A database-as-a-service for the
cloud,” 2011.

[19] S. Das et al., “Elastras: An elastic transactional data store in the cloud,”
USENIX HotCloud, vol. 2, 2009.

[20] J. Shute et al., “F1: A distributed SQL database that scales,” Proceed-
ings of the VLDB Endowment, vol. 6, no. 11, pp. 1068–1079, 2013.

 Fig. 12 Runtimes of the single-client benchmark for different read ratios. The benchmark compares the ORESTES protocol using several web caches to the
native performance of the Versant Object Database and to ORESTES without any caching at all. Three consecutive runs of the benchmark are performed.

Fig. 13 Share of different operations in the total execution time with a read ratio of 90% on 500 operations and 300 database objects.

20
40
60
80

100
120
140
160

1 2 3

Ti
m

e
[s

]

Run

99% read ratio

20
40
60
80

100
120
140
160

1 2 3

Ti
m

e
[s

]

Run

90% read ratio

20
40
60
80

100
120
140
160

1 2 3

Ti
m

e
[s

]

Run

50% read ratio

Squid 2

Squid 3

Squid 3 patched

Microsoft TMG

No cache

VOD (client cache)

0 50 100 150

1

2

3

Time [s]

Ru
n

VOD (client cache)

0 50 100 150

1

2

3

Time [s]

Ru
n

Microsoft TMG

0 50 100 150

1

2

3

Time [s]

Ru
n

Squid 2

0 50 100 150

1

2

3

Time [s]

Ru
n

Squid 3 patched

reads
writes
querys
other (e.g. transactions)

222

